
IP-ESC'09 Conference – December 1-3, 2009 1

Abstract :

Description of a new Scatter-Gather DMA

component is presented. This DMA component uses

a block of descriptors instead of a single one. This

solution allows to increase a speed of data transfer

with a fragment memory. The ADP201x1 module

with this new Scatter-Gather DMA component

provides a speed of input around 1522 Mbytes per

second on the 1536 Mbytes memory block.

INTRODUCTION

“Instrumental Systems” company focuses

mainly at the developing of modules like ADC,

DAC and DSP. It has solutions for PCI as well as

for Compact PCI buses. Several years ago we found

also a solution for exploitation of a PCI-Express

bus. Currently the realization of this PCI-Express

bus with a use of Virtex 4 FPGA was accessible at

several IP Cores:

• IP Core from Xilinx;

• DesignWare IP Core from Synopsys;

• EZDMA IP Core from PLDA.

For our developments we have chosen the

EZDMA IP Core from PLDA [1]. This IP Core

includes three layers of standard PCI-Express:

Physical, Link, Transaction and additional

Application layer. Application layer contains eight

direct DMA channels. Reference design contains

the Scatter-Gather DMA component.

In the Scatter-Gather DMA Transfer mode, the

DMA start address is a pointer to a chained list of

page descriptors. Each descriptor contains the

address and the size of a data block, and also a

pointer to the next descriptor block to enable

circular buffers. Such mode is realized in PCI9054,

PCI9056 and PEX8311 chips from PLX

Technology [2], in EZDMA IP Core from PLDA

[1] and IP Core from Northwest Logic [3]. This

mode provides the maximum speed of a data

exchange. For example, with the PCI9056 chip on

the 32 bits PCI bus, 33 MHz speed of 110 Mbytes/s

is provided at a limit of 125 Mbytes per second.

During operations with the EZDMA IP Core

there are several problems:

1. The DMA channel during data transmission

from the bus to the device provides a very slow

speed in FIFO mode. It is related to a fact that

the controller sends only one request for read

operation and waits for its performance.

Standard PCI-Express allows to send several

requests, but answers can come in any order. It

is admissible for memory, but is not admissible

for FIFO.

2. The DMA request for reading can be ended

with a “Completion Timeout” error. It is very

uncommon error, but it happens. The DMA

controller only informs on this error, but does

not correct it.

3. The DMA controller reads out only one

descriptor. It reduces the speed of the data

exchange during operations with the fragment

memory.

In operating system Windows there are two

ways of memory allocation:

1. Allocation in the system memory.

2. Allocation in the user memory.

In the system memory a continuous memory

block of physical addresses is allocated, but it is

impossible to allocate a large block of memory.

Typical value which could be allocated in this case

is only 128 Mb. On the other hand, in the user

memory it is possible to allocate the larger block of

memory as, for example, 1536 Mb, but this memory

will be fragmented on pages of 4 kilobytes. In the

Scatter-Gather mode the DMA controller reads out

a descriptor for each page. The reading of

descriptor is a long operation and it slows down the

exchange of the data. For example, on the PCI-

Express x4 the data input in the system memories

goes on with the speed of 710 Mb/s and in the user

memory with only 550 Mb/s.

DESCRIPTION OF NEW CONTROLLER

The new DMA controller has been developed

to resolve these problems.

 IP-ESC’09

Scatter-Gather DMA IP Core for PLDA EZDMA IP

Dmitry Smekhov, Instrumental Systems

Moscow Russia

IP-ESC'09 Conference – December 1-3, 2009 2

This new controller replaces the “DMA_SG”

component from the EZDMA reference design. The

controller block diagram is shown below.

DMA PARAM

DESCRIPTOR

CHANNEL 0

DESCRIPTOR

CHANNEL 1

DMA MEMORY

DMA LOGIC

RAM CHANNEL 0

BANK 0

4 kB

BANK 1

4 kB

RAM CHANNEL 1

BANK 0

4 kB

BANK 1

4 kB

EZDMA

A
P

P
L

IC
A

T
IO

N
 L

O
G

IC

 On the block diagram the next components are

presented:

• EZDMA – connection to EZDMA

• DMA LOGIC – DMA channel operating logic.

• DMA MEMORY – memory of current

parameters of the DMA channel.

• RAM CHANNEL0 – data memory of the

channel 0

• RAM CHANNEL1 – data memory of the

channel 1

• APPLICATION LOGIC – connection to other

part of the project

The DMA controller is a two-channels

controller, each of which is bidirectional. Thus,

there is only one realization of operating logic and

related memory, where work parameters of every

channel are saved. This allows to reduce the amount

of logic resources.

For each channel there are two banks of

memory with the 4 kilobytes size for a bank. For the

PCI-Express it looks like a memory and for device

it looks as FIFO.

During data input from device, the device fills

the first bank of memory, while controller transfers

data to the PCI-Express from the other bank. Then

banks are interchanged their positions.

During data output to device, the controller

reads out the data from the computer memory and

places it in the first bank of memory. The controller

sends several read requests providing the maximum

speed of data read out. Answers can come in any

order and they are registered in the same memory

bank according to their address. Meantime the data

are transferred to FIFO from the second bank. After

the end of process two banks are interchanged with

their positions. In the case of occurrence the

“Completion Timeout” error the repeated cycle of

filling the memory banks starts.

The time diagram of data reading from the

memory looks as follows:

1. There is an initial delay, approximately 1 us.

2. Package reception

The initial delay does not depend on the size of

the required block. Also it turns out that reading of

8 or 512 bytes takes an approximately the same

time.

In our work separate descriptors have been

united in the special block of descriptors. This

block has the size of 512 bytes and contains 63

descriptors with additional indexes of the following

block of descriptors. This solution allows to

increase the speed of work with the fragment

memory.

Let’s compare: a single descriptor provides

input speeds of 710 Mb/s for the system memory

and 550 Mb/s for the user memory. The solution

with the block of descriptors provides the speed of

input around 714 and 709 Mb/s in the similar

conditions.

The block of descriptors is protected by the

signature and the CRC. The DMA controller reads

out the block of descriptors and checks both the

signature and the CRC. If there is an error the

controller stops its work. This feature considerably

facilitates a software debugging.

There is moreover a possibility after finishing

of the data exchange to pass to the first descriptor in

the block. It allows do not access to the memory for

the reading of descriptors.

After the end of the data exchange with a

descriptor the controller can generate or not

generate an interrupt for the CPU. It allows to work

with the fragment memory. If, for example, the

chain of descriptors can describe the memory block

of 48 Mbytes, which consists of 12288 pages in

4 kilobytes, such interruption for the CPU will be

generated only after reception of 48 Mbytes block.

The DMA controller can work also with cyclic

buffers. Thus, there can be a problem with the speed

of data processing in the CPU. If the processor

processes the data more slowly, than the DMA

controller transfers them, or if in the course of

processing there is a pause, a loss of the data is

possible. For solving this problem there is a special

mode of data transfer, called “consistent mode”. In

this mode the interrupt handler on the CPU defines

a parity between the accepted and processed blocks

and if necessary pauses the data transmission.

The special components cl_test_check and

cl_test_generate have been developed for testing the

DMA component. During data input from the

device, the cl_test_generate generates the special

test sequence of data. The program checks this

sequence in a real-time mode. Such a test can be

executed within several hours. During data output to

IP-ESC'09 Conference – December 1-3, 2009 3

the device, the program generates again the test

sequence of data. The DMA controller transfers

data to the device while the cl_test_check

component checks data and remembers number of

errors. Also it remembers the data for the first 16

errors. The test sequence includes several kinds of

data block: running zero, running one, counter and

pseudo-random sequence.

Up to now our company has developed two

devices named “AMBPEX8” and “ADP201x1”.

AMBPEX8 uses the FPGA Virtex4 XC4VFX20

with the PCI-Express x4. ADP201x1 uses the

FPGA Virtex5 XC5VLX50T with the PCI-Express

x8. Descriptions of both modules can be found on a

company Web-site: http://www.insys.ru.

The reached speeds of the data exchange are

presented in the table below (Table 1).

Measurements are executed on computer Intel

Core I7 2.8 GHz with chipset P55. As it follows

from the table, the speed of the data transfer with

the user memory is the same as with the system

memory.

Table 1. Comparison of characteristic speeds of

input and output data transfers between different

modules and computer.

Input from

device
Output to device

Module System

128

MB

User

1536

MB

System

128

MB

User

1536

MB

ADP201x1

Virtex 5

PCIE x8

1535

MB/s

1522

MB/s

1031

MB/s

1016

MB/s

AMBPEX8

Virtex 4

PCIE x4

714

MB/s

709

MB/s

521

MB/s

518

MB/s

CONCLUSIONS

The new Scatter-Gather DMA component have

been developed. This DMA component provides

the next opportunities:

 1. Fast work with the fragment memory.

 2. Correction of the “Completion Timeout” error.

 3. Fast data transmission to device in the FIFO

mode.

REFERENCES

1. “EZDMA IP for Xilinx Hard IP Reference

Manual”, PLDA

http://plda.com/download/doc/ip/ez_dma_v5lxt/EZ

DMA_Reference_Manual.pdf

2. “PCI 9056”, PLX Technology

http://www.plxtech.com/download/file/668

3. “DMA Back-End Core”, Northwest Logic

http://www.nwlogic.com/docs/PCIe_DMA_Ba

ck-End_Core.pdf

